p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.23D4, (C4×C8).2C4, C8⋊C4.1C4, C22⋊C8.1C4, C42.31(C2×C4), (C2×C4).31C42, C4.1(C8.C4), (C22×C4).17Q8, C23.12(C4⋊C4), (C22×C4).119D4, C2.6(C4.9C42), C42.6C4.5C2, C42.12C4.8C2, C2.3(C4.C42), (C2×C42).127C22, C2.5(M4(2)⋊4C4), C22.37(C2.C42), (C2×C4).14(C4⋊C4), (C22×C4).91(C2×C4), (C2×C4).294(C22⋊C4), SmallGroup(128,19)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.23D4
G = < a,b,c,d | a4=b4=1, c4=b2, d2=a-1b, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=a2b, dcd-1=a-1b2c3 >
Subgroups: 112 in 63 conjugacy classes, 32 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C23, C42, C2×C8, C22×C4, C4×C8, C8⋊C4, C8⋊C4, C22⋊C8, C22⋊C8, C4⋊C8, C2×C42, C42.12C4, C42.6C4, C42.23D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2.C42, C8.C4, C4.9C42, C4.C42, M4(2)⋊4C4, C42.23D4
(1 42 31 15)(2 43 32 16)(3 44 25 9)(4 45 26 10)(5 46 27 11)(6 47 28 12)(7 48 29 13)(8 41 30 14)(17 64 55 35)(18 57 56 36)(19 58 49 37)(20 59 50 38)(21 60 51 39)(22 61 52 40)(23 62 53 33)(24 63 54 34)
(1 7 5 3)(2 30 6 26)(4 32 8 28)(9 15 13 11)(10 43 14 47)(12 45 16 41)(17 19 21 23)(18 50 22 54)(20 52 24 56)(25 31 29 27)(33 35 37 39)(34 57 38 61)(36 59 40 63)(42 48 46 44)(49 51 53 55)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 37 13 51 27 62 44 17)(2 18 41 59 28 52 10 34)(3 64 15 19 29 39 46 53)(4 54 43 36 30 20 12 61)(5 33 9 55 31 58 48 21)(6 22 45 63 32 56 14 38)(7 60 11 23 25 35 42 49)(8 50 47 40 26 24 16 57)
G:=sub<Sym(64)| (1,42,31,15)(2,43,32,16)(3,44,25,9)(4,45,26,10)(5,46,27,11)(6,47,28,12)(7,48,29,13)(8,41,30,14)(17,64,55,35)(18,57,56,36)(19,58,49,37)(20,59,50,38)(21,60,51,39)(22,61,52,40)(23,62,53,33)(24,63,54,34), (1,7,5,3)(2,30,6,26)(4,32,8,28)(9,15,13,11)(10,43,14,47)(12,45,16,41)(17,19,21,23)(18,50,22,54)(20,52,24,56)(25,31,29,27)(33,35,37,39)(34,57,38,61)(36,59,40,63)(42,48,46,44)(49,51,53,55)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,37,13,51,27,62,44,17)(2,18,41,59,28,52,10,34)(3,64,15,19,29,39,46,53)(4,54,43,36,30,20,12,61)(5,33,9,55,31,58,48,21)(6,22,45,63,32,56,14,38)(7,60,11,23,25,35,42,49)(8,50,47,40,26,24,16,57)>;
G:=Group( (1,42,31,15)(2,43,32,16)(3,44,25,9)(4,45,26,10)(5,46,27,11)(6,47,28,12)(7,48,29,13)(8,41,30,14)(17,64,55,35)(18,57,56,36)(19,58,49,37)(20,59,50,38)(21,60,51,39)(22,61,52,40)(23,62,53,33)(24,63,54,34), (1,7,5,3)(2,30,6,26)(4,32,8,28)(9,15,13,11)(10,43,14,47)(12,45,16,41)(17,19,21,23)(18,50,22,54)(20,52,24,56)(25,31,29,27)(33,35,37,39)(34,57,38,61)(36,59,40,63)(42,48,46,44)(49,51,53,55)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,37,13,51,27,62,44,17)(2,18,41,59,28,52,10,34)(3,64,15,19,29,39,46,53)(4,54,43,36,30,20,12,61)(5,33,9,55,31,58,48,21)(6,22,45,63,32,56,14,38)(7,60,11,23,25,35,42,49)(8,50,47,40,26,24,16,57) );
G=PermutationGroup([[(1,42,31,15),(2,43,32,16),(3,44,25,9),(4,45,26,10),(5,46,27,11),(6,47,28,12),(7,48,29,13),(8,41,30,14),(17,64,55,35),(18,57,56,36),(19,58,49,37),(20,59,50,38),(21,60,51,39),(22,61,52,40),(23,62,53,33),(24,63,54,34)], [(1,7,5,3),(2,30,6,26),(4,32,8,28),(9,15,13,11),(10,43,14,47),(12,45,16,41),(17,19,21,23),(18,50,22,54),(20,52,24,56),(25,31,29,27),(33,35,37,39),(34,57,38,61),(36,59,40,63),(42,48,46,44),(49,51,53,55),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,37,13,51,27,62,44,17),(2,18,41,59,28,52,10,34),(3,64,15,19,29,39,46,53),(4,54,43,36,30,20,12,61),(5,33,9,55,31,58,48,21),(6,22,45,63,32,56,14,38),(7,60,11,23,25,35,42,49),(8,50,47,40,26,24,16,57)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | ··· | 4J | 4K | 8A | ··· | 8H | 8I | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 2 | ··· | 2 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | - | ||||||
image | C1 | C2 | C2 | C4 | C4 | C4 | D4 | D4 | Q8 | C8.C4 | C4.9C42 | M4(2)⋊4C4 |
kernel | C42.23D4 | C42.12C4 | C42.6C4 | C4×C8 | C8⋊C4 | C22⋊C8 | C42 | C22×C4 | C22×C4 | C4 | C2 | C2 |
# reps | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 1 | 1 | 8 | 2 | 2 |
Matrix representation of C42.23D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 9 | 0 | 0 |
0 | 0 | 13 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 9 |
0 | 0 | 0 | 0 | 13 | 16 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
15 | 0 | 0 | 0 | 0 | 0 |
5 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
9 | 1 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 4 |
0 | 0 | 0 | 0 | 0 | 9 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 2 | 9 | 0 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,13,0,0,0,0,9,16,0,0,0,0,0,0,1,13,0,0,0,0,9,16],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[15,5,0,0,0,0,0,8,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[9,0,0,0,0,0,1,8,0,0,0,0,0,0,0,0,8,2,0,0,0,0,0,9,0,0,8,0,0,0,0,0,4,9,0,0] >;
C42.23D4 in GAP, Magma, Sage, TeX
C_4^2._{23}D_4
% in TeX
G:=Group("C4^2.23D4");
// GroupNames label
G:=SmallGroup(128,19);
// by ID
G=gap.SmallGroup(128,19);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,520,1018,136,3924,102]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=a^-1*b,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=a^-1*b^2*c^3>;
// generators/relations